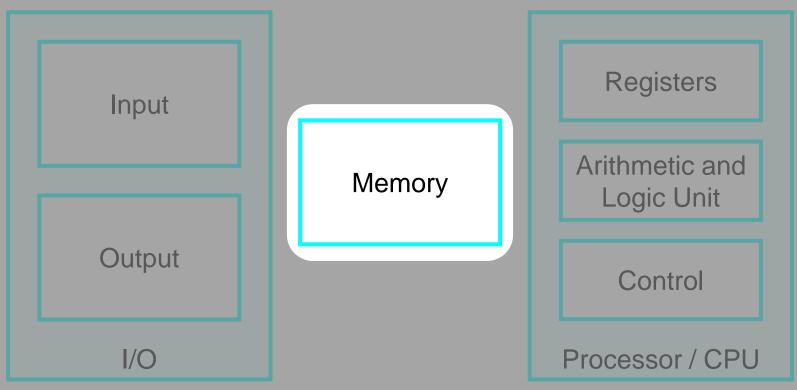


香港中文大學 The Chinese University of Hong Kong


CSCI2510 Computer Organization

Lecture 06: Memory Hierarchy

Basic Functional Units of a Computer 🎉

- Input: accepts coded information from human operators.
- **Memory**: stores the received information for later use.
- Processor: executes the instructions of a program stored in the memory.
- Output: sends back to the outside world.
- Control: coordinates all of these actions.

Outline

- An Overview of Memory
- Memory Technologies
 - Random Access Memory (RAM)
 - Read-Only Memory (ROM)
 - Non Volatile Memory (NVM)
- Memory Hierarchy

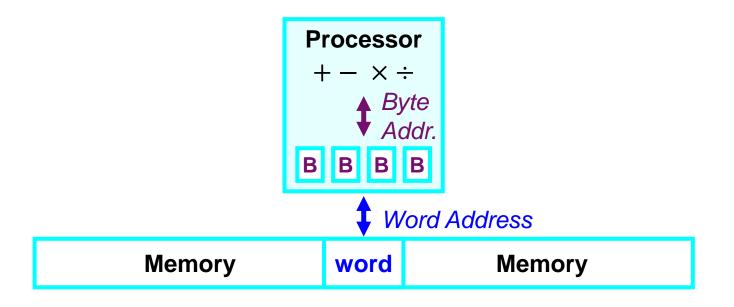
Why We Need Memory?

 Reason: Programs and the data must be held in the memory of the computer to be executed.

Task Manager						_		<	
Processes Performance App history Startup Users Details Services									
^			29	%	35%	0%	0%		
Name				CF	PU	Memory	Disk	Network	
Apps (8) in-use!								^	
> 🚣 Adob	e Acrobat	(32 bit)		0)%	62.4 MB	0 MB/s	0 Mbps	
> O Goog	Google Chrome (2)			0)%	147.2 MB	0.1 MB/s	0.1 Mbps	
> 👂 Instant Dictionary (32 bit)			0.2	2%	21.1 MB	0 MB/s	0 Mbps		
> P Microsoft PowerPoint			0)%	282.1 MB	0 MB/s	0 Mbps		
> Skype	Skype (32 bit)		0.1	%	67.0 MB	0.1 MB/s	0 Mbps		
> 🧣 Snipp	Snipping Tool			0.5	5%	4.6 MB	0 MB/s	0 Mbps	
> 🙀 Task Manager			0.5	5%	14.6 MB	0 MB/s	0 Mbps		
> 🙀 Windows Explorer			0.4	1%	60.3 MB	0 MB/s	0 Mbps		

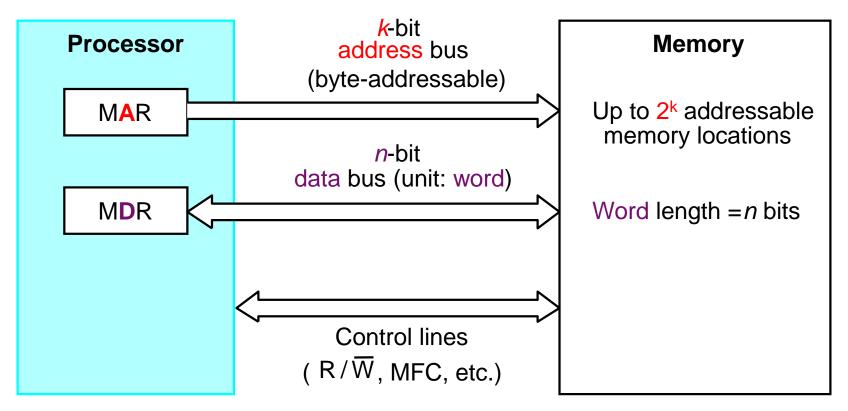
Revisit: Memory Basics

- The <u>maximum size of memory</u> is determined by addressing scheme.
 - E.g. 16-bit addresses can represent 2¹⁶ = 65536 = 64K
 distinct memory locations.
- Most machines are byte-addressable.
 - Each memory address location refers to a byte (B).
 - E.g. 32-bit machine can utilize a memory that contains up to $2^{32} = 4GB$.
 - What if we install more than 4GB main memory in a 32-bit machine?
- Memory is designed to store/retrieve in words.
 - A word is usually of 16, 32 or 64 bits.
 - Reason? Performance consideration.


Abbreviations:

- $1K \sim = 2^{10} (Kilo)$
- $1M \sim = 2^{20} \, (Mega)$
- 1 $G \sim = 2^{30} (Giga)$
- $1T \sim = 2^{40} (Tera)$

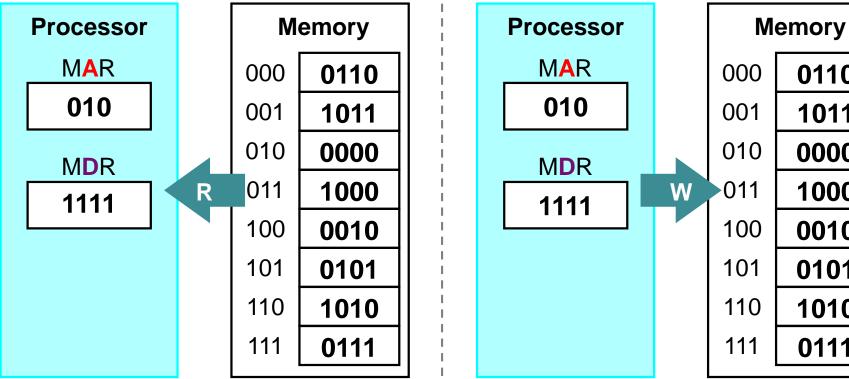
Revisit: Operational Unit


- Most machines are byte-addressable.
 - Each memory address location refers to a byte (B).
- Memory is designed to store/retrieve in words.
 - A word is usually of 16, 32 or 64 bits.
 - Reason? Performance consideration.

Simplified View: Processor-Memory

- Data transferring takes place through MAR and MDR.
 - MAR: Memory Address Register
 - MDR: memory Data Register

*MFC (Memory Function Completed): Indicating the requested operation has been completed.


Class Exercise 6.1

Student ID: _____ Date: Name:

- Assume 3-bit address bus (i.e. k=3) and 4-bit data bus (i.e. n=4) are used.
- What will be the contents of MAR, MDR, and the memory after a read or write operation is performed?

(a) Read Operation

(b) Write Operation

0110

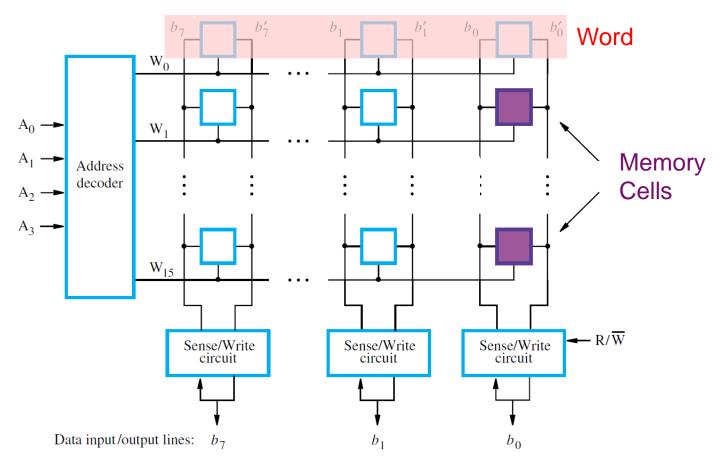
1011

0000

1000

0010

0101


1010

0111

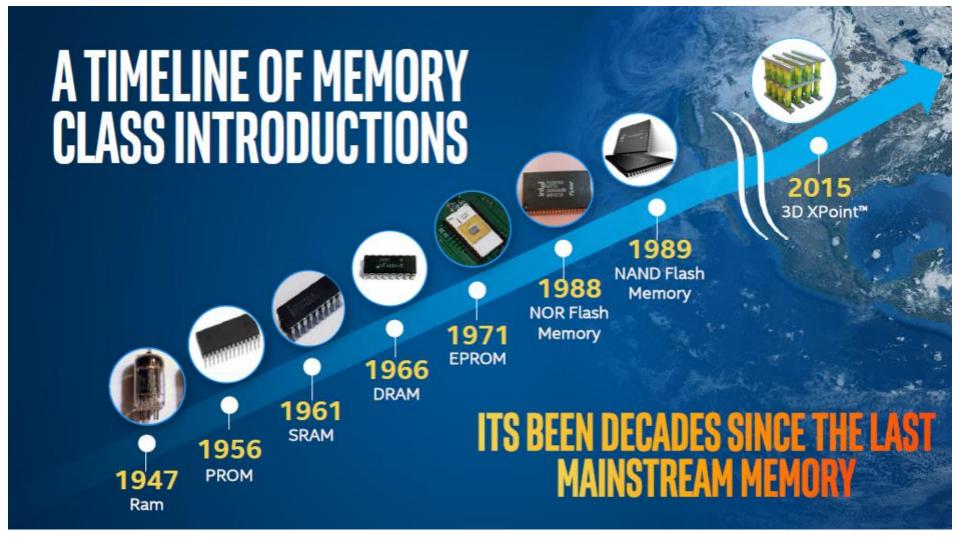
Memory Cell Organization

- Memory cells are usually organized as an array:
 - Each cell can store one bit of information, and
 - Each row of cells constitutes a memory word.

Class Exercise 6.2

- In the previous example, the small memory circuit contains 16 words, and each word has 8 bits.
- How many bits of data can be stored in this memory?
- Answer: ______
- How many bits of address bus do we needed?
- Answer: ______
- How many bits of data bus do we needed?
- Answer: ______
- How many control lines do we needed?
- Answer: _____

Outline



- An Overview of Memory
- Memory Technologies
 - Random Access Memory (RAM)
 - Read-Only Memory (ROM)
 - Non Volatile Memory (NVM)
- Memory Hierarchy

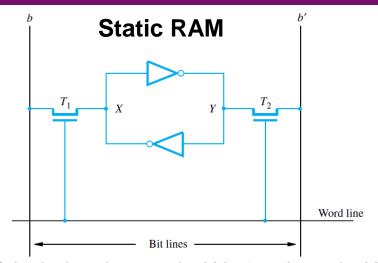
Mainstream Memory Technologies

There are many types of memory in the market:

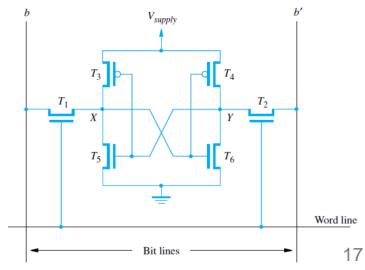
https://thememoryguy.com/category/other-current-memory-technologies/

Outline

- An Overview of Memory
- Memory Technologies
 - Random Access Memory (RAM)
 - Read-Only Memory (ROM)
 - Non Volatile Memory (NVM)
- Memory Hierarchy

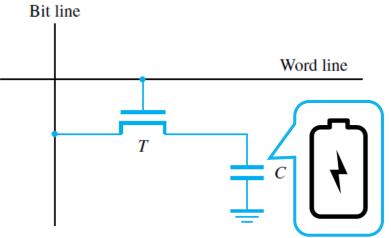

Random Access Memory (RAM)

- Random Access Memory (RAM): The access time to any location is the same, independent of the location's address.
 - Memory Access Time: The time between start and finish of a memory request.
- That is, we can "randomly" access any location of the RAM with the same access time.
- RAM are available in a wide range of types:
 - 1) Static RAM (SRAM)
 - 2) Dynamic RAM (DRAM)
 - 3) Synchronous DRAM (SDRAM)


Static RAM (SRAM)

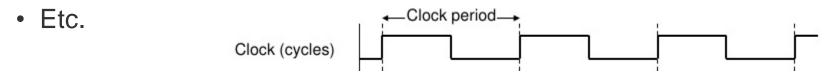
- Static RAM (SRAM): Capable of "statically" retaining the cell state (i.e. data) as long as power is applied (i.e., *volatile*).
 - Fast: Access times are on the order of a few nanoseconds.
 - Low power:
 - In **SRAM**, continuous power is needed for retaining its state; otherwise, the contents are lost.
 - In CMOS SRAMs, current flows only when accessing the cells.
 - Costly: Several transistors are required.
 - As a result, the capacity is small.

If the logic value at point X is 1 and at point Y is 0, this state is maintained as long as the signal on the word line is at ground level. Assume that this state represents the value 1.

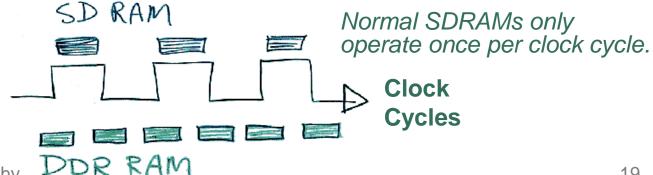

CMOS Static RAM

Dynamic RAM (DRAM)

- Dynamic RAM (DRAM): Store data in the form of "dynamical" charges on a capacitor.
 - A DRAM cell is <u>cheaper</u>, <u>simpler</u>, but slower than a SRAM cell.



- Why a DRAM cell is "dynamical"?
 - Charges can be maintained for only tens of milliseconds.
 - That is, the charges will leak away as time goes (i.e., volatile).
- The contents of DRAM cells must be refreshed periodically.
 - By recharging the capacitor.
 - → A DRAM cell consumes more power than a SRAM cell.


Synchronous DRAM (SDRAM) (1/3)

- Synchronous DRAM (SDRAM): Use the same cells as DRAM, but use a **clock** to synchronize operations.
 - Why to synchronize operations?
 - The refresh operation can be transparent to the users.
 - The data can be transferred at "double data rate" (faster!).

- The most common type used today as the main memory.
- Double Data Rate (DDR) SDRAM: Transfer data on both clock edges.

Synchronous DRAM (SDRAM) (2/3)

 Memory Modules: The standard for today's computers to hold multiple SDRAM chips.

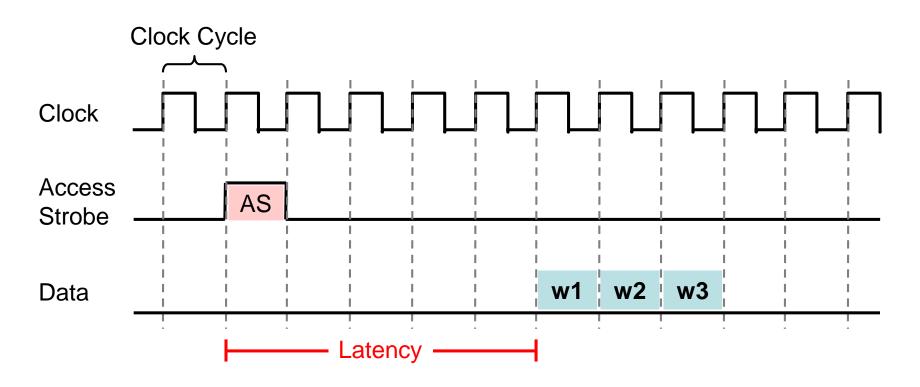
SO-DIMM (for laptop)
Small Outline Dual In-line
Memory Module

DIMM (for desktop) **D**ual In-line Memory **M**odule

Synchronous DRAM (SDRAM) (3/3)

- Enhanced Versions: DDR-2, DDR-3, and DDR-4
 - They offer larger size, lower power and faster clock rates.
- The table below compares the theoretical maximum bandwidths of different SDRAM types.

RAM Type	Theoretical Maximum Bandwidth				
SDRAM 100 MHz (PC100)	100 MHz X 64 bit/ cycle = 800 MByte/sec				
SDRAM 133 MHz (PC133)	133 MHz X 64 bit/ cycle = 1064 MByte/sec				
DDR SDRAM 200 MHz (PC1600)	2 X 100 MHz X 64 bit/ cycle ~= 1600 MByte/sec				
DDR SDRAM 266 MHz (PC2100)	2 X 133 MHz X 64 bit/ cycle ~= 2100 MByte/sec				
DDR SDRAM 333 MHz (PC2600)	2 X 166 MHz X 64 bit/ cycle ~= 2600 MByte/sec				
DDR-2 SDRAM 667 MHz (PC2-5400)	2 X 2 X 166 MHz X 64 bit/ cycle ~= 5400 MByte/sec				
DDR-2 SDRAM 800 MHz (PC2-6400)	2 X 2 X 200 MHz X 64 bit/ cycle ~= 6400 MByte/sec				


• SDRAM does not perform as good as the table shown, due to latencies.

CSC12510 Lec06: Memory Hierarchy

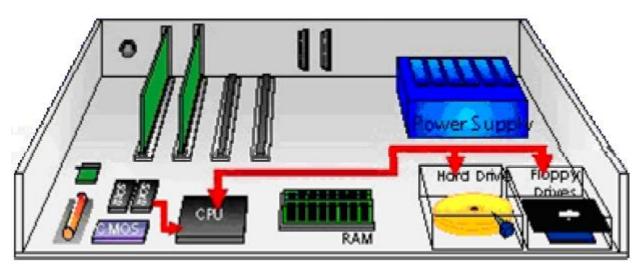
Bandwidth vs. Latency

- Bandwidth: The number of bits or bytes that can be transferred in one second.
- Latency: The amount of time it takes to transfer the first word, after issuing a access (access strobe).

Class Exercise 6.3

- Suppose the clock rate is 500 MHz, and each word (i.e., w1, w2, w3) is 16 bits in the previous example.
- What is the latency and what is the bandwidth on transferring data?
- Answer:

Outline



- An Overview of Memory
- Memory Technologies
 - Random Access Memory (RAM)
 - Read-Only Memory (ROM)
 - Non Volatile Memory (NVM)
- Memory Hierarchy

Read-Only Memory (ROM) (1/2)

- All types of RAM cells are programmable but volatile.
 - Volatile: the data can be only kept while power is turned on.
- Read-Only Memory (ROM): Information can be written into it only once, but it's non-volatile.
 - Useful to bootstrap a computer: a small program (e.g. BIOS) used to "turn on" the computer.
 - It loads the operating system (OS) from the storage into the memory.

Read-Only Memory (ROM) (2/2)

- Some other ROM designs allow the data to be programmed and erased:
 - Programmable ROM (PROM):
 - Irreversibly allow the data to be loaded by the user (write once!).
 - Erasable Reprogrammable ROM (EPROM):
 - Allow the stored data to be erased and new data to be written into it.
 - Provide flexibility for the development of digital systems.
 - Electrically EPROM (EEPROM):
 - An EPROM must be physically removed from the circuit for reprogramming, and the stored data cannot be erased selectively.
 - EEPROM can be erased and reprogrammed electrically.
 - Different voltages for erasing/writing/reading increases complexity.
- Nevertheless, ROM is slower than RAM.

Outline

- An Overview of Memory
- Memory Technologies
 - Random Access Memory (RAM)
 - Read-Only Memory (ROM)
 - Non Volatile Memory (NVM)
- Memory Hierarchy

Non-Volatile Memory (NVM) (1/3)

- A new approach similar to EEPROM technology.
- Non-Volatile Memory (NVM)
 - NVM can be read, written, and erased, and it's non-volatile.
 - Features: greater density, higher capacity and lower cost, lower power, shock resistant, but still slower than RAM.
 - The most famous example: flash memory

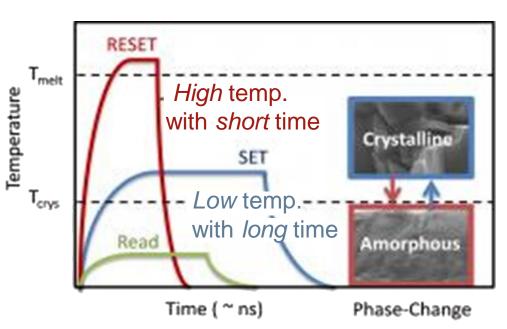
There are many other types of NVM for future computers:
 PCRAM, ReRAM (for deep learning!?), STTRAM, etc.

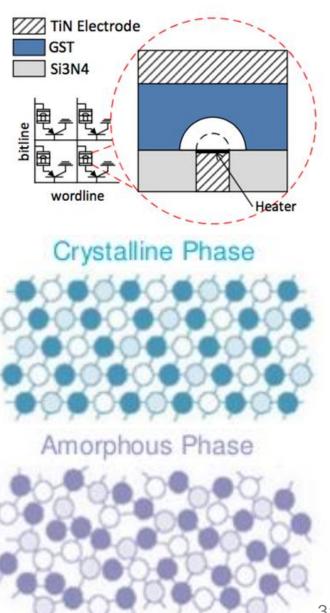
USB

Drives

Non-Volatile Memory (NVM) (2/3)

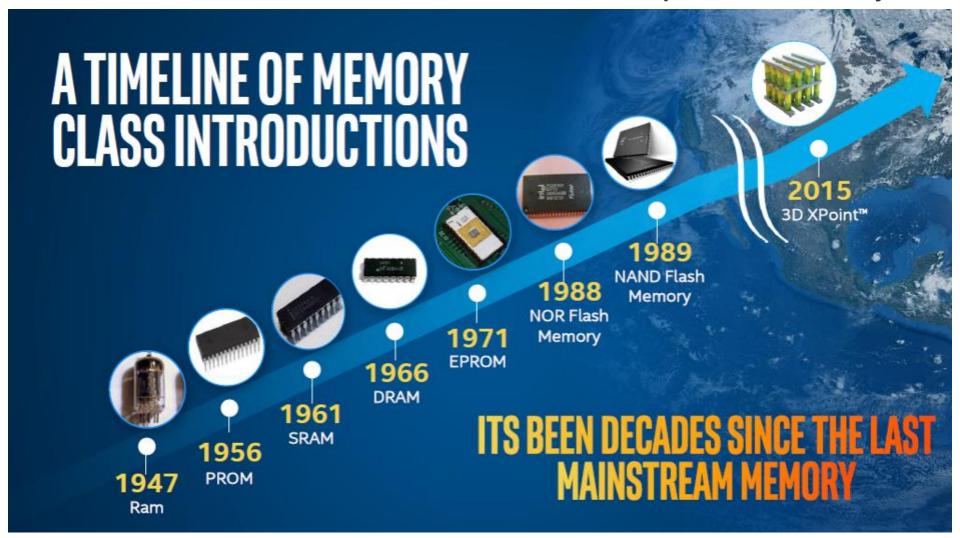
- Intel® Optane™ DC persistent memory is the latest, innovative memory technology.
 - It delivers affordable large space and data persistence.
 - 10X higher density than DRAM.
 - It adopts Phase Change Memory (PCM) as the media.




https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html https://www.slideshare.net/Syntech/intel-micron-unveil-breakthrough-3d-xpoint-memory-tech-a-revolutionary-breakthrough-in-memory-technology

Non-Volatile Memory (NVM) (3/3)

- Phase Change Memory (PCM) adopts two-phase mechanisms:
 - The crystalline phase with lower resistance (binary 1).
 - The amorphous phase with high resistance (binary 0).



Revisit: Memory Technologies

What is the "best" choice for the computer memory?

https://thememoryguy.com/category/other-current-memory-technologies/

Outline

- An Overview of Memory
- Memory Technologies
 - Random Access Memory (RAM)
 - Read-Only Memory (ROM)
 - Non Volatile Memory (NVM)
- Memory Hierarchy

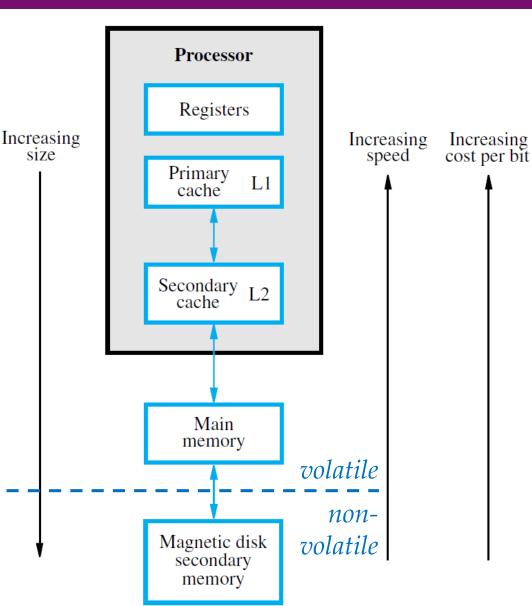
Mix-and-Match: Best of ALL

- An ideal memory would be <u>fast</u>, large, and cheap.
- The fact is different memories have its pros and cons.
- SRAM is fast, but expensive and not very dense:
 - Good choice for providing the user the fastest access time
 → Good for registers, L1 and L2 cache in the processor
- SDRAM is slower, but cheap and dense:
 - Good choice for providing the user a big memory space
 → Good for main memory

 volatile
- **NVM/Disks/SSDs** are even slower, but non-volatile cheaper, denser and non-volatile:
 - Good choice for cost-effective and non-volatile data storage
 Good for secondary storage

Solution: Memory Hierarchy

size

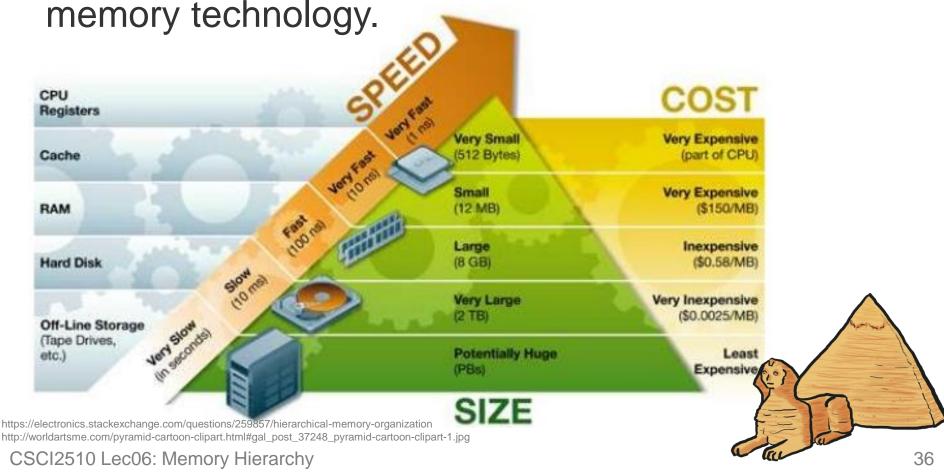

Processor

Register: SRAM

L1, L2 cache: SRAM

Main memory: SDRAM

Secondary storage: Hard disks or NVM



Memory Hierarchy "Pyramid"

 Provide the user with as much memory as is available in the cheapest memory technology.

Provide access at the speed offered by the fastest

Summary

- An Overview of Memory
- Memory Technologies
 - Random Access Memory (RAM)
 - Read-Only Memory (ROM)
 - Non Volatile Memory (NVM)
- Memory Hierarchy